Title	Inventory of Beamline vacuum components				
Project Requestor	GAGLIANO, JOSEPH				
Date	3/12/2008				
Group Leader(s)	GOEPPNER, GEORGE A				
Machine or Sector	N/A				
Manager					
Category	Machine Obsolescence and Spares				
Content ID*	APS_1253929 Rev. 1				

^{*}This row is filled in automatically on check in to ICMS. See Note ¹

Description:

Start Year (FY)	2008	Duration (Yr)	3

Objectives:

Maintain user beamline uptime by stocking key vacuum components.

Benefit:

Provide a "standard" of key vacuum components.

Risks of Project: See Note ²

This would be a considered low risk, routine maintenance.

Consequences of Not Doing Project: See Note ³

Possibility of a beamline being down for an extended period of time.

Cost/Benefit Analysis: See Note 4

The cost benefit is reasonable in support of the user beamline community.

T	•	4 •	
Desc	rın	tın	'n.
DCDC	TIP	LIU	

Inventory key vacuum components, ion pump controllers, vacuum gauge controllers, RGA's.

Funding Details

Cost: (\$K)

Use FY08 dollars.

Year	AIP	Contingency
1	70	
2	70	
3	70	
4		
5		
6		
7		
8		
9		
Total	210	

Contingency may be in dollars or percent. Enter figure for total project contingency.

Effort: (FTE)

The effort portion need not be filled out in detail by March 28

	Mechanical	Electrical		Software				
Year	Engineer	Engineer	Physicist	Engineer	Tech	Designer	Post Doc	Total
1								0
2								0
3								0
4								0
5								0
6								0
7								0
8								0
9								0

Notes:

¹ **ICMS**. Check in first revision to ICMS as a *New Check In*. Subsequent revisions should be checked in as revisions to that document i.e. *Check Out* the previous version and *Check In* the new version. Be sure to complete the *Document Date* field on the check in screen.

² **Risk Assessment.** Advise of the potential impact to the facility or operations that may result as a consequence of performing the proposed activity. Example: If the proposed project is undertaken then other systems impacted by the work include ... (If no assessment is appropriate then enter NA.)

³ **Consequence Assessment.** Advise of the potential consequences to the facility or to operations if the proposal is not executed. Example: If the proposed project is not undertaken then ____ may happen to the facility. (If no assessment is appropriate then enter NA.)

⁴ **Cost Benefit Analysis.** Describe cost efficiencies or value of the risk mitigated by the expenditure. Example: Failure to complete this maintenance project will result in increased total costs to the APS for emergency repairs and this investment of ____ will also result in improved reliability of ____. (If no assessment is appropriate then enter NA.)